Large self-injective rings and the generating hypothesis
نویسندگان
چکیده
منابع مشابه
Torsionfree Dimension of Modules and Self-injective Dimension of Rings
Let R be a left and right Noetherian ring. We introduce the notion of the torsionfree dimension of finitely generated R-modules. For any n 0, we prove that R is a Gorenstein ring with self-injective dimension at most n if and only if every finitely generated left R-module and every finitely generated right R-module have torsionfree dimension at most n, if and only if every finitely generated le...
متن کاملInjective Modules and Fp-injective Modules over Valuation Rings
It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....
متن کاملFp-injective and Weakly Quasi-frobenius Rings
The classes of FP -injective and weakly quasi-Frobenius rings are investigated. The properties for both classes of rings are closely linked with embedding of finitely presented modules in fp-flat and free modules respectively. Using these properties, we characterize the classes of coherent CF and FGF-rings. Moreover, it is proved that the group ring R(G) is FP -injective (weakly quasi-Frobenius...
متن کاملA Note on א0-injective Rings
A ring R is called right א0-injective if every right homomorphism from a countably generated right ideal of R to RR can be extended to a homomorphism from RR to RR. In this note, some characterizations of א0-injective rings are given. It is proved that if R is semiperfect, then R is right א0injective if and only if every homomorphism from a countably generated small right ideal of R to RR can b...
متن کاملLocalization of Injective Modules over Valuation Rings
It is proved that EJ is injective if E is an injective module over a valuation ring R, for each prime ideal J 6= Z. Moreover, if E or Z is flat, then EZ is injective too. It follows that localizations of injective modules over h-local Prüfer domains are injective too. If S is a multiplicative subset of a noetherian ring R, it is well known that SE is injective for each injective R-module E. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra & Number Theory
سال: 2014
ISSN: 1944-7833,1937-0652
DOI: 10.2140/ant.2014.8.257